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Approach

Consider a system of n differential equations of the form

x′
1 = f11x1 + f12x2 + ... + f1nxn

x′
2 = f21x1 + f22x2 + ... + f2nxn

...

x′
n = fn1x1 + fn2x2 + ... + fnnxn

x1(0) = x10; x2(0) = x20; ...; xn(0) = xn0.

where n ∈ N, and fij : [0, ∞) → C is an integrable function for all i, j ∈ {1, ..., n}. Let Mn×n(C)
denote the set of n by n matrices with complex entries. If we define the matrix of functions

A :=

f11 ... f1n
... ... ...

fn1 ... fnn

 ,

and x(t) = (x1(t), x2(t), ..., xn(t)), then x′(t) = (x′
1(t), x′

2(t), ..., x′
n(t)). The system may then be

rewritten as an IVP that we aim to solve:{
x′(t) = A(t)x(t)
x(0) = x0

Introduction

Systems of homogeneous, linear first-order ODEs with integrable coefficients have many appli-

cations in the scientific world. The wide range of dynamical systems modeled by such equations

continues to push scientists in a wide variety of fields to search for friendly techniques to find

solutions.

Transformation F

For an integrable A : [0, ∞) → Mn×n(C), we define the transformation F as follows for each

integrable Y : [0, ∞) → Mn×n(C) and all t ≥ 0:

F(y)(t) :=
∫ t

0
A(τ )y(τ )dτ

for each integrable y : [0, ∞) → Cn and for all t ≥ 0. Notice that we have that x(t) = x0+F(x)(t)
and that F is linear. Also notice that in special cases such as F , for any constant vector c ∈ Cn,

F(Y c)(t) =
∫ t

0 A(τ )Y (τ )cdτ = F(Y )(t)c as we expect.

Transformation limit for F for approximation

Let A : [0, ∞) → Mn×n(C) be integrable.
The transformation F is linear, and for all t0 > 0, n ≥ 0 for all integrable x : [0, ∞) → Cn, we have

sup
t∈[0,t0]

‖Fk(x)(t)‖ ≤
(supt∈[0,t0] ‖A(t)‖t0)k

k!
sup

t∈[0,t0]
‖x(t)‖

Now that we have this lemma, we finally have the tools to show that an infinite k-fold composition

of F as k → ∞ converges.

Solution form to the IVP

Let A : [0, ∞) → Mn×n(C) be integrable, and x(t) = (x1(t), x2(t), ..., xn(t)), with x′(t) =
(x′

1(t), x′
2(t), ..., x′

n(t)), then from we have

x(t) = x0 +
∫ t

0
A(τ )x(τ )dτ

Now we have an idea for formulating a solution for x in general. However, the integral∫ t

0 A(τ )x(τ )dτ is not computable in general; so, we search for a new approach.

Series B

It follows easily from induction that x(t) =
∑n

k=0 Fk(I)(t)x0 + Fn+1(x)(t) for all n > 0, where I

is the n by n identity matrix viewed as a function and Fk is the k-fold composition of F .

For an integrable A : [0, ∞) → Mn×n(C), define F as above. Then if it exists, we define a function

B : [0, ∞) → Mn×n(C) as

B(t) :=
∞∑

k=0

Fk(I)(t)

for t ∈ [0, ∞).

Series B as the unique solution to the IVP

Let A : [0, ∞) → Mn×n(C) be integrable. Then B exists and

B(t)x(0) =
∞∑

k=0

Fk(I)(t)x(0)

is the unique solution to the IVP x′(t) = A(t)x(t) for first differentiable x : [0, ∞) → Cn with

initial condition x(0). A sketch of the proof is provided:

Proof: Series B as the unique solution to the IVP

Let w(t) : [0, ∞) → Cn be a solution to the IVP for t ∈ [0, ∞). Then, we have w(t) − x(0) =∫ t

0 A(τ )w(τ )dτ .

Using our definition of F , we have

w(t) = x(0) +
∫ t

0
A(τ )u(τ )dτ = F0(I)(t)x(0) + F(w)(t)

Showing w(t) =
∑0

s=0 Fs(I)(t)x(0) + F0+1(w)(t) and w(t) =
∑k+1

s=0 Fs(I)(t)x(0) + Fk+2(w)(t)
completes the proof by induction.

Finally, ‖w(t) − B(t)x(0)‖ = 0 proves uniqueness of our solution.

Commutative Approximation Theorem

Let A : [0, ∞) → Mn×n(C) be an integrable function. Also define C : [0, ∞) → Mn×n(C) as
C(t) = F(I)(t)A(t) − A(t)F(I)(t). Then for all t0 ≥ 0,

sup
t∈[0,t0]

‖e
∫ t

0 A(τ )dτ − B(t)‖ ≤
supt∈[0,t0] ‖C(t)‖t0

2
e
supt∈[0,t0] ‖A(t)‖t0

Case: A is a matrix of constant entries

Notice that if A is a constant, then B(t) =
∑∞

k=0 Fk(I)(t) =
∑∞

k=0
(At)t

k! , similar to the terms

of the series representation of e, namely ea =
∑∞

k=0
ak

k! .

Let A ∈ Mn×n(C). Then if it exists,

eA :=
∞∑

k=0

Ak

k!

eA does exist for all A ∈ Mn×n(C) and has many properties similar to e defined over the real

or complex numbers.

Suppose we seek to solve the IVP x′(t) = Ax(t) for first differentiable x : [0, ∞) → Cn with
initial condition x(0)

Recall
∑∞

k=0 Fk(I)(t)x(0) is the unique solution to the IVP where F(X)(t) =
∫ t

0 AX(τ )dτ∑∞
k=0 Fk(I)(t)x(0) =

∑∞
k=0

(At)k

k! x(0) = etAx(0)
The unique solution to this IVP is then

etAx(0)

Constant Case Example

Many lakes are part of a complex system of interconnected bodies of water. If one or more of

these bodies of water is polluted, then it comes as no surprise that the pollution will spread

throughout the system.

Assuming, for example, that the original amount of pollution (in pounds) in the Lakes is

1000, 1100, 900, 0, and 300 respectively, ri = 1 for i ∈ {1, 2, ..., 5}, and
V = {2900, 1180, 850, 116, 393} (measured in cubic miles) respectively

Then we may develop a system that models the evolution of pollution throughout the lake

system:

(IV P )
{

x′(t) = Ax(t)
x(0) = x0

with x0 = (1000, 1100, 900, 0, 300)ᵀ
We may then write this system in matrix form with each entry aij ∈ A.

We are then able to compute etAx0 = L−1[(λI − A)−1)(t)x0 =
e−10t

29 0 0 0 0
−649e−165t

59 −10t
29

4195 e−165t
59 −1298e−165t

59 −18t
17

1743 0 0
0 0 e−18t

17 0 0
0 0 0 1 0
0 0 0 393

145e−500t
131 +500t

131 e−500t
131


which has the modeled solution:
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